Hey, Vsauce. Michael here.

There’s a famous way to seemingly create chocolate out of

nothing. Maybe you’ve seen it before.

This chocolate bar is 4 squares by 8 squares, but if you cut it like this and then like this and finally like this you can rearrange the pieces like so and wind up with the same 4 by 8 bar but with a leftover piece, apparently

created out of thin air. There’s a popular

animation of this illusion as well. I call it an illusion because it’s just that. Fake.

In reality, the final bar is a bit smaller.

It contains this much less chocolate. Each square

along the cut is shorter than it was in the original, but the cut makes it difficult to notice

right away. The animation is extra misleading, because it tries to

cover up its deception. The lost height of each square is

surreptitiously added in while the piece moves to make

it hard to notice. I mean, come on, obviously you cannot cut up

a chocolate bar and rearrange the pieces into more than

you started with. Or can you?

One of the strangest theorems in modern mathematics is the

Banach-Tarski paradox. It proves that there is, in fact, a way to

take an object and separate it into 5 different pieces. And then, with those five pieces, simply rearrange them.

No stretching required into two exact copies of the original item. Same density, same size, same everything. Seriously. To dive into the mind blow that it is and the way it fundamentally

questions math and ourselves, we have to start by asking

a few questions. First, what is infinity? A number?

I mean, it’s nowhere on the number line,

but we often say things like there’s an infinite “number” of blah-blah-blah. And as far as we know, infinity could be real. The universe may be infinite in size and flat, extending out for ever and ever without end, beyond even the part we can

observe or ever hope to observe. That’s exactly what infinity is.

Not a number per se, but rather a size.

The size of something that doesn’t end.

Infinity is not the biggest number, instead, it is how many numbers there are. But there are different

sizes of infinity. The smallest type of infinity is countable infinity.

The number of hours in forever. It’s also the number of whole

numbers that there are, natural number, the numbers we use when

counting things, like 1, 2, 3, 4, 5, 6 and so on. Sets like these are unending, but they are countable. Countable

means that you can count them from one element to any other in a finite amount of time, even if that finite

amount of time is longer than you will live or the universe will exist for, it’s still finite. Uncountable infinity, on the other hand, is literally bigger.

Too big to even count. The number of real numbers that there are, not just whole numbers, but all numbers is uncountably infinite.

You literally cannot count even from 0 to 1 in a finite amount of

time by naming every real number in between.

I mean, where do you even start?

Zero, okay.

But what comes next? 0.000000… Eventually, we would imagine a 1 going somewhere at the end, but there is no end. We could always add another 0.

Uncountability makes this set so much larger than the set

of all whole numbers that even between 0 and 1, there are more numbers than there are whole numbers on the

entire endless number line. Georg Cantor’s famous diagonal argument helps illustrate this.

Imagine listing every number between zero and one. Since they are

uncountable and can’t be listed in order, let’s imagine randomly generating them forever with no repeats. Each number regenerate can be paired with a whole number. If there’s a one to

one correspondence between the two, that is if we can match one whole number

to each real number on our list, that would mean that countable and uncountable sets are the same size.

But we can’t do that, even though this list goes on for ever. Forever isn’t enough.

Watch this. If we go diagonally down our endless

list of real numbers and take the first decimal

of the first number and the second of the second number,

the third of the third and so on and add one to each, subtracting one if it happens to be a nine, we can

generate a new real number that is obviously between 0 and 1, but since we’ve defined it to be

different from every number on our endless list

and at least one place it’s clearly not contained in the list. In other words, we’ve used up every

single whole number, the entire infinity of them and yet we

can still come up with more real numbers.

Here’s something else that is true but counter-intuitive.

There are the same number of even numbers as there are even and odd numbers. At first, that sounds

ridiculous. Clearly, there are only half as many even numbers as all whole numbers,

but that intuition is wrong. The set of all whole numbers is denser but every even number can be matched with a

whole number. You will never run out of members either

set, so this one to one correspondence shows that both sets are the same size. In other words, infinity divided by two is still infinity. Infinity plus one is also infinity. A good illustration of this is Hilbert’s

paradox up the Grand Hotel.

Imagine a hotel with a countably infinite number of

rooms. But now, imagine that there is a person booked

into every single room. Seemingly, it’s fully booked, right?

No. Infinite sets go against common sense. You see, if a new guest shows up and wants a room, all the hotel has to do is move the

guest in room number 1 to room number 2. And a guest in room 2 to

room 3 and 3 to 4 and 4 to 5 and so on. Because the number of rooms is never ending we cannot run out of rooms.

Infinity -1 is also infinity again. If one guest leaves the hotel, we can shift every guest the other way.

Guest 2 goes to room 1, 3 to 2, 4 to 3 and so on, because we have an infinite amount of guests. That is a

never ending supply of them. No room will be left empty.

As it turns out, you can subtract any finite number from infinity and still be left with infinity.

It doesn’t care. It’s unending. Banach-Tarski hasn’t left

our sights yet. All of this is related.

We are now ready to move on to shapes.

Hilbert’s hotel can be applied to a circle. Points around the

circumference can be thought of as guests. If we remove one point from the circle that point is gone, right?

Infinity tells us it doesn’t matter.

The circumference of a circle is irrational. It’s the radius times 2Pi. So, if we mark off points beginning from

the whole, every radius length along the

circumference going clockwise we will never land on the same point

twice, ever.

We can count off each point we mark with a whole number.

So this set is never-ending, but countable, just like guests and

rooms in Hilbert’s hotel. And like those guests,

even though one has checked out, we can just shift the rest.

Move them counterclockwise and every room will be

filled Point 1 moves to fill in the hole, point 2 fills in the place where point 1 used to be,

3 fills in 2 and so on. Since we have a unending

supply of numbered points, no hole will be left unfilled. The missing point is forgotten.

We apparently never needed it to be complete. There’s one last needo

consequence of infinity we should discuss before tackling Banach-Tarski.

Ian Stewart famously proposed a brilliant dictionary. One that he called the Hyperwebster.

The Hyperwebster lists every single possible word of any length formed from the 26 letters in the

English alphabet. It begins with “a,” followed by “aa,” then “aaa,” then “aaaa.” And after an infinite number of those, “ab,” then “aba,” then “abaa”, “abaaa,” and so on until “z, “za,” “zaa,” et cetera, et cetera,

until the final entry in infinite sequence of “z”s.

Such a dictionary would contain every single word.

Every single thought, definition, description, truth, lie, name, story.

What happened to Amelia Earhart would be in that dictionary,

as well as every single thing that didn’t happened to Amelia Earhart. Everything that could be said using our alphabet.

Obviously, it would be huge, but the company publishing it might

realize that they could take a shortcut. If they put all the words

that begin with a in a volume titled “A,” they wouldn’t have to print the initial “a.”

Readers would know to just add the “a,” because it’s the “a” volume.

By removing the initial “a,” the publisher is left with every “a” word sans the first “a,” which has surprisingly become every possible word.

Just one of the 26 volumes has been

decomposed into the entire thing. It is now that we’re ready to

investigate this video’s titular paradox.

What if we turned an object, a 3D thing into a Hyperwebster? Could we decompose pieces of it into the

whole thing? Yes.

The first thing we need to do is give every single point on the

surface of the sphere one name and one name only. A good way to

do this is to name them after how they can be reached by a given starting point. If we move this starting point across

the surface of the sphere in steps that are just the right length,

no matter how many times or in what direction we rotate, so long

as we never backtrack, it will never wind up in the

same place twice. We only need to rotate in four

directions to achieve this paradox. Up, down, left and right around two perpendicular axes.

We are going to need every single possible sequence that can

be made of any finite length out of just these

four rotations. That means we will need lef, right, up and down as well as left left, left up, left down, but of course not left right, because, well, that’s

backtracking. Going left and then right means you’re the same as

you were before you did anything, so no left rights, no right lefts and no up

downs and no down ups. Also notice that I’m writing

the rotations in order right to left, so the final rotation is the leftmost letter.

That will be important later on. Anyway. A list of all possible sequences

of allowed rotations that are finite in lenght is, well, huge. Countably infinite, in fact. But if we apply each one of them to a

starting point in green here and then name the point we

land on after the sequence that brought us there,

we can name a countably infinite set of points

on the surface. Let’s look at how, say, these four strings

on our list would work. Right up left. Okay, rotating the starting

point this way takes us here. Let’s colour code the point

based on the final rotation in its string, in this case it’s left and for that we will use purple.

Next up down down. That sequence takes us here.

We name the point DD and color it blue, since we ended with a down rotation.

RDR, that will be this point’s name, takes us here.

And for a final right rotation, let’s use red.

Finally, for a sequence that end with up, let’s colour code the point orange. Now, if we imagine completing this

process for every single sequence, we will have a

countably infinite number of points named and color-coded.

That’s great, but not enough.

There are an uncountably infinite number of points on a sphere’s surface. But no worries, we can just pick a point

we missed. Any point and color it green, making it a new starting point and then run every

sequence from here.

After doing this to an uncountably infinite number of

starting point we will have indeed named and colored every single point on

the surface just once.

With the exception of poles. Every sequence has two poles of

rotation. Locations on the sphere that come back to

exactly where they started. For any sequence of right or left rotations, the polls are the north and

south poles. The problem with poles like these is

that more than one sequence can lead us to them. They can be named more than once and be colored in more than one color. For example, if

you follow some other sequence to the north or south pole, any subsequent rights or lefts will be equally valid names. In order to deal

with this we’re going to just count them out of the normal scheme and color them all yellow.

Every sequence has two, so there are a countably infinite amount of them. Now, with every point on the

sphere given just one name and just one of six colors,

we are ready to take the entire sphere apart. Every point on the surface

corresponds to a unique line of points below it all the way to the center point.

And we will be dragging every point’s line along with it.

The lone center point we will set aside. Okay, first we cut out

and extract all the yellow poles, the green starting points, the orange up points, the blue down points and the red and purple left and right

points. That’s the entire sphere.

With just these pieces you could build the whole

thing. But take a look at the left piece. It is defined by being a piece composed of every point, accessed via a sequence ending with a left rotation.

If we rotate this piece right, that’s the same as adding an “R” to every point’s name.

But left and then right is a backtrack, they cancel each other

out. And look what happens when you reduce them away. The set becomes the same as a set of all points with names

that end with L, but also U, D and every point reached with no rotation.

That’s the full set of starting points. We have turned less than a quarter of

the sphere into nearly three-quarters just by rotating it. We added nothing. It’s like

the Hyperwebster. If we had the right piece and the poles of rotation and the center

point, well, we’ve got the entire sphere again, but with stuff left over.

To make a second copy, let’s rotate the up piece down.

The down ups cancel because, well,

it’s the same as going nowhere and we’re left with a set of all

starting points, the entire up piece, the right piece and the left

piece, but there’s a problem here. We don’t need this extra set of starting

points. We still haven’t used the original ones. No worries, let’s just

start over. We can just move everything from the up

piece that turns into a starting point when

rotated down. That means every point whose final

rotation is up. Let’s put them in the piece. Of course, after rotating

points named UU will just turn into points named U,

and that would give us a copy here and here.

So, as it turns out, we need to move all points with any name that is just a string of Us. We will put them in the down piece and

rotate the up piece down, which makes it congruent to

the up right and left pieces, add in the down piece

along with some up and the starting point piece and, well,

we’re almost done. The poles of rotation and center are missing from this copy, but no worries.

There’s a countably infinite number of holes,

where the poles of rotations used to be, which means there is some pole around

which we can rotate this sphere such that every pole hole orbits around without

hitting another. Well, this is just a bunch of circles

with one point missing. We fill them each like we did earlier.

And we do the same for the centerpoint. Imagine a circle that contains it inside

the sphere and just fill in from infinity and look

what we’ve done. We have taken one sphere and turned it

into two identical spheres without adding anything. One plus one equals 1.

That took a while to go through,

but the implications are huge. And mathematicians, scientists and

philosophers are still debating them. Could such a process happen in the real

world? I mean, it can happen mathematically and

math allows us to abstractly predict and describe a lot of things in the real

world with amazing accuracy, but does the Banach-Tarski paradox take it too far?

Is it a place where math and physics separate?

We still don’t know. History is full of examples of

mathematical concepts developed in the abstract that we did not think would ever apply

to the real world for years, decades, centuries,

until eventually science caught up and realized they were totally applicable and useful. The Banach-Tarski paradox could

actually happen in our real-world, the only catch of course is that the

five pieces you cut your object into aren’t simple shapes.

They must be infinitely complex and detailed. That’s not possible to do in

the real world, where measurements can only get so small and there’s only a finite amount of time

to do anything, but math says it’s theoretically valid and some scientists think it may be physically valid too. There have been a number of papers

published suggesting a link between by Banach-Tarski and the way tiny tiny sub-atomic

particles can collide at high energies and turn

into more particles than we began with. We are finite creatures. Our lives are small and can only scientifically

consider a small part of reality.

What’s common for us is just a sliver of what’s available. We can

only see so much of the electromagnetic spectrum. We can only delve so deep into

extensions of space. Common sense applies to that which we

can access.

But common sense is just that. Common.

If total sense is what we want, we should be prepared to

accept that we shouldn’t call infinity weird or strange. The results we’ve arrived at by

accepting it are valid, true within the system we use to

understand, measure, predict and order the universe. Perhaps the system still needs

perfecting, but at the end of day, history continues to show us that the

universe isn’t strange. We are. And as always, thanks for watching. Finally, as always, the description is full

of links to learn more. There are also a number of books linked

down there that really helped me wrap my mind kinda around Banach-Tarski. First of all, Leonard Wapner’s “The Pea and the Sun.” This book is fantastic and it’s full of lot of the preliminaries needed to understand the proof that comes later.

He also talks a lot about the ramifications of what Banach-Tarski and their

theorem might mean for mathematics. Also, if you wanna talk about math and

whether it’s discovered or invented, whether it really truly will map onto the universe,

Yanofsky’s “The Outer Limits of Reason” is great. This is the favorite book of mine that I’ve read

this entire year. Another good one is E. Brian Davies’ “Why Beliefs Matter.” This is actually

Corn’s favorite book, as you might be able to see there.

It’s delicious and full of lots of great information about the limits of what we

can know and what science is and what mathematics is. If you love infinity and math, I cannot

more highly recommend Matt Parker’s “Things to Make and Do in the Fourth Dimension.” He’s hilarious and this book is very very great at explaining some pretty

awesome things. So keep reading,

and if you’re looking for something to watch, I hope you’ve already watched Kevin

Lieber’s film on Field Day. I already did a documentary about Whittier, Alaska over there. Kevin’s got a great short film about

putting things out on the Internet and having people react to them. There’s

a rumor that Jake Roper might be doing something on Field Day soon. So check out mine, check out Kevin’s and subscribe to Field Day for upcoming Jake

Roper action, yeah? He’s actually in this room right now, say

hi, Jake. [Jake:] Hi. Thanks for filming this, by the way. Guys, I really appreciate who you all are. And as always, thanks for watching.

I always like when he says something and then smiles, and then it slowly becomes a frown and he says “or does it” or “or can you”

13:53 Wouldn't LUR and U actually end up being the same point, since you traverse the exact same length for each rotation??

Huh

Woah I’m high right now🤩✨

Infinity isn't on the number line because it is the number line

Looking back on this video, it's a fucking masterpiece. One of Michael's best.

😯

Wait…THIS ENTIRE VIDEO IS JUST A POLE!

If you take one slice of pizza from an infinitely large pizza the infinite pizza remains infinite. I summed up the entire video with pizza.

19:10 – Michael, I’m probably barely more of a scientist than I am a mathematician, and math was my weakest subject… But wouldn’t fire be a suitable real-life example of BT’s paradox manifesting in our real world?

The flame of one candle being used to, hypothetically, light an infinite number of candles without the source flame ever being depleted is the first of two scenarios that comes to mind when my brain tries to translate the words coming out of your mouth into tangible existence.

Just how close to “infinitely complex and detailed” is a flame…?

The chocolate bar trick explains the Vanishing Leprechaun trick (and similar puzzles).

https://www.theguardian.com/science/alexs-adventures-in-numberland/gallery/2014/apr/01/vanishing-leprechaun-disappearing-dwarf-puzzles-pictures

wouldn’t it be cool if you could know the answers for everything?

6:49 the best explanation of Infinite Hotel Paradox on internet is here, MUST WATCH 👉 https://youtu.be/Uj3_KqkI9Zo

But how can we move a point from a circle??

“Add one to each, subtracting one if it happens to be a nine”

9: “All around me are familiar faces”

Wait.. So infinity +1 would technically mean LESS because adding the +1 givee Infinitt a WHOLE NUMBER which means its countable infinity so you technically made it less than actual Infinity

Omg am I high cool

My brain hurts

How does this go from chocolate to history and math

Y'all know what a brain fart is? K good, basically this video gave my brain dierreah

Words can describe everything, and nothing at the same time. Everything is infinite, and finite. Everything is, and isn't.

Going to bed? No.

Watching Vsauce at 3 A.M.? YES

I fell asleep then woke up the next day with this going on youtube

Press F to pay respect for foreigners that watched this video.

To be honest this probably how God created everything if you really think about it.

That makes me afraid

I feel like my brain is on a crazy trip

At 11:08 he messed up on were it goes ac aca acaa and acaa gose twice ? (Volume 1(

Why don’t they upload these videos anymore

Elliptical curve cryptography uses this sort of thing

Throwing tip tops at the back of the class

It works for logic gates I'm mc I used that to make a logic gate in mc with redstone and command blocks

21:50, there i could see mutliple dogs pictures… What does that mean? I can see dogs in those spiral

*NO JOKE*someone please link me to one of his vids talking about something like that please? Thank you|∞| ?

they look like fluffy balls

My brain is now not virgin anymore…

I wonder what the finite amount of money this video saved you guys by omitting animation, opting for the demo on paper. C'mon Vsauce. You have 14 million subscribers.

What?

I’m to simple minded to watch you

I'm not Vsauce

7:44 nooo why not just make the guest at the other end of the infinity hotel walk to room 1

All I wanted was to eat choccolate

Michael has become a father now… Vsauce 4?

I swear I’ve watched this video 11 times and remember nothing.

Michael = Albert Einstein reancarnated

This video made me drunk without the use of alcohol like an infinite thought.

I remember when I was staying in North Carolina, and I would go to sleep at 4 am in the morning watching vsauce videos and getting high.

21:40 i learned a total new way to call people "weirdos", nice vid!

🤔

did anybody else get a headache

It's super easy, doesn't need to dig that deep. An object make of infinite number of points/particles can be copied infinite times using its own points. As there are infinite number of points in the original object, we never run out of points. However, the paradox is the fact that the object is NOT made of infinite number of points. In fact any object is made of finite countable number of particles. Even if subatomic particles are to be split, the outcome is still countable, and so on.

No infinity is countable. All this about superset and sticking greek letters all over the place is BS.

Fake 1 cash

In the simulation, this is how copy and paste works

2019 anybody?

The dollar cut was bs. Dude tore the dollar in different places compared to the fucking 2 dollars on the table. He literally ripped the dollar out the black center circle containing George face than the dollar on the table black center circle was cut. Debunked that bs real quick and easy.

Michal commented a crime on camera.

It's illegal to rip up a governmental note such as a dolar bill

1-0=2

My german brain says , infinity contains infinity ,

so everything contains everything . As above so below .

Hey this video has the same background score as BuzzFeed Unsolved. So cool 😎

Using 1 dimensional points on 3 dimensional object… Of course its infinite…

How to basic

Mathematics explains "the miracle of five loaves and two fishes"

Conclusion :

Infinity is infinite

how do people think of this

you must be taking a serious shower for this kind of thought

This reminds me why i hate math

Argument that reals are not countable because there doesn't exist a number that takes place right after 0 is not a good one. Reals are uncountable, but not because of that. Rationals are countable, and yet there is no number 'after 0'- there is always smaller rational. That's why we say rationals are dense in reals.

Atheists: God cannot create matter from nothing!

God: Hold my sphere…

wat

I think infinity is where math and physics disagree

Big Brain time

Michael: RDR

My brain:

immediately thinks of red dead redemption1:15 classic michael

But points don't have substance. They can't make up matter. They just represent it.

I really want to go “heY, vsAuce miCheal herE” but I don’t want to disrespect a science video

My brain hurts……

This guy should be in AGT

Just go in front of them and rip a dollar in five pieces and make it to 2 dollars

I'll pay Michael 2 octillion dollars each planks time lol.P S what is π^π^π^π^…

my brain just died

min(13:55) "U" would land on "LUR" correct???? Unless I'm the only one looking at this as a grid. where a unit is measured by "L,R,U,D"

Real life money duplication glitch

Aka the matrix

Wow infinity is weird

Michael: no u

This was incredibly mindblowing

13:42 RIP John Marston

People: the chocolate thing is fake

Michael:

infinity -1 is still infinityWhy did you have to use YouTube premium

now you can get 2 dollars from 1

Amazing!

Spinnin' head

1+1=1

michael: … or can you?

ah shit, here we go againbitch what

So i really Need to say: the paradox isnt paradox! At first lets get to Ur presentation. I really Like that mysterious way and was so happy that u did not make that one mistake i have seen. There were people using The Order Ruud so they did a step backwards and did not pay attention. But There's a Problem. By turning the sphere u are changing the first Letter, that means u are not using the Same color, and then we see that u only recombine the Same things as before. But There's another Thing. Each color describe the whole sphere even if u have one starting point. So if u devide the colors u would end up With copiing the sphere and not creating something more out of less. This Was Hard to See but if u have a close Look at the facts U'll See. It's Like that choclate, confusong. Ya i Just wanted to make those things clear to help people understand the mistake in the paradox not being a paradox. Sorry for my grammar mistake i am german😂

Him: Rips up a dollar bill and gives a really intellectual lesson designed to teach and inspire…

Me:…wait….thats illegal.

Me at 6 arguing with someone else: NOTHING IS BIGGER THAN INFINITY

other kid: INFINITY AND ONE IS.

me:NO WAY

other kid: YES

Michele out of nowhere: Actually

So what's 0 times infinity?

Math has been disabled due to an exploitAnd so on…

So what is infinity minus infinity?! 😮